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Magnetohydrodynamic flow constructions with 
fundamental solutions 

By MEREDITH C. GOURDINE 
Plasmadyne Corporation, Santa h a ,  California 

(Received 26 July 1960 and in revised form 27 December 1960) 

In  this paper steady flows of an incompressible, viscous, electrically conducting 
fluid are constructed from fundamental solutions of magnetohydrodynamics in 
which the applied magnetic field is parallel to the velocity at infinity. The flat plate 
and the sphere are considered as examples, and approximate solutions are pre- 
sented for the limiting cases of large and small Reynolds and magnetic Reynolds 
numbers. The effects of currents in the body are also considered, and it is found 
that unless the magnetic Prandtl number is larger than unity, currents in the 
body have negligible effect on the flow. 

1. Introduction 
A certain class of magnetohydrodynamic (MHD) problems involving the flow 

of an incompressible electrically conducting fluid over a solid body, in the presence 
of an applied magnetic field parallel to the main flow, can be described approxi- 
mately by a set of linear equations (Gourdine 1960). Simple MHD flows over 
solids can then be constructed by superposing fundamental solutions of these 
equations to satisfy appropriate boundary conditions. Examples of this technique 
are presented in this paper 

Chester (1957) treats MHD flow over a sphere as a perturbation of the Stokes 
flow, while Ludford (1959) treats the same problem as a perturbation of the Oseen 
flow. Lary (1960) studies this class of problems assuming the fluid has zero 
viscosity and finds that when the Alfvth number LY is larger than unity the body 
produces a forward wake due to the propagation of Alfvhn disturbances upstream. 
Hasimoto (1959) finds a similar phenomenon is his study of the problem with a 
fluid of infinite electrical conductivity. Other investigators have also considered 
problems in this class: Gotoh (1960), Yosinobu (1960), Blerkom (1960), Greenspan 
& Carrier (1959), and Greenspan (1960). In  this paper, the fundamental solution 
or singular body approach is employed. This is not a new technique (Blerkom 
1960), but it has the advantage of providing physical insight into the problem, 
and it also allows easy generalization of the problem to include the effects of 
currents in the body. 
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2. Mathematical description of the problem 

velocity field u and the induced magnetic field h (Gourdine 1960): 
The following set of dimensionless linearized equations describes the induced 

V . U  = V.h = 0, 

where f = 6(r)a  represents a singular velocity disturbance in the flow and 
g = 6(r) b represents a singular magnetic disturbance in the flow; here 6(r)  is the 
Dirac delta function, r being measured radially from the origin, and a and b are 
unit vectors. The other symbols are defined as follows: Re is the Reynolds number, 
Rm is the magnetic Reynolds number, a is the Alfvh number, andp is the net 
pressurethe sum of hydrostatic and magnetic pressure. 

The solutions of equations (1) are the fundamental solutions for this class of 
MHD problems, and it has been shown (Gourdine 1960) that they can be written 
in the following form 

(1c) 

2 

n=O 
uij(x, y, 2) = q. + utj = x (u; + ut) rij(Anx, y, z),  

hi3(x, y, Z )  = h5 + = 2 Kn( U; + Uk)  Fij(Anx, y, z) .  

P a )  

( 2 b )  
2 

n= 0 

The net pressure is proportional to the x-component of the zeroth mode of the 
velocity (n = 0): 

pj(x,y,z) =py+p: = -(i-a2)(ug+ u;)rZj(~,x,y,z). (3) 

The fundamental solutions uij, htj and pj, are the velocity and magnetic field 
disturbances in the i-direction and the net pressure, respectively, due to singular 
disturbances that are in the j-direction at the origin. The fundamental solutions 
consist of contributions from the velocity singularity (superscript u) and the 
magnetic singularity (superscript h).  

The function rij(Anx, y, z )  represents the fundamental solution of the Oseen- 
type equations au 1 --- V2u = 6(r) j, ax A, ( 4 4  

v . u  = 0. (4b) 

A, = 0, ( 5 4  

A, = +Re[(1+Pm)+{(l+Pm)2-4Pm(l -a2)}*], (5b) 

A, = +Re[( 1 + Pm)  - {( 1 + Pm)2 - 4Pm( 1 - a2)}*], ( 5 4  

Here A, has the following three values 

where Pm E cpv is the so-called magnetic Prandtl number. These are plotted in 
figures 1 and 2. 
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The magnetic mode parameters K,  have the three values 

K O =  1, 
K,  = $a-2[(1 -Pm) -{(I -Pm)2+4a2Pm)fr], 

K,  = 1 - Pm) + (( 1 - Pm) + 4a2Pm}fr]. 
These are plotted in figures 3 and 4. 
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(b) 
FIGURE 1. (a)  u < 1; (b )  a > 1. 

The mode strengths in equations (2a )  and ( 2 b )  consist of two parts; U; is due 
to a velocity singularity and U t  is due to a magnetic singularity. A study of 
the equations (1) near the singularities at  the origin yields the following expres- 
sions for the velocity singularity mode strengths, 

and corresponding expressions for the magnetic singularity mode strengths, 

ugh= 1, 
u: = - Pm/(K, - K J ,  
U,h = Pm/(K2 - K l ) .  

These relations ensure that the fields are divergence free even at the origin. 
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MHD flow over a finite body may be described in terms of the fundamental 
solutions by the integral 

RePm = Rm 

a 

where f l y  and fl? are the strengths per unit volume of the distributed velocity and 
magnetic singularities respectively. A similar integral can be written for the 
magnetic field which, of course, also involves S; and St. These two distribution 
functions can be determined, in principle at least, by satisfying two boundary 
conditions on the body. One boundary condition is that the total velocity must 
vanish at the body; therefore that u, = - 1, uy = 0, us = 0 at the body. The other 
boundary condition is either on the magnetic field or the current density at the 
body. In the most general problem, the body carries an internal electric generator 
which establishes currents within itself. 
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The remainder of this paper concerns itself with the problem of solving for 1.97 
and S;. Only special cases are attempted because a general solution is probably 
impossible. 

- l / a  

\ 

= u p )  

FIGURE 3. (a)  a c 1; ( b )  a > 1. 

FIGURE 4 
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3. MHD drag of a finite flat plate 
Following the usual procedure for constructing flows by superposition, let 

SE = f (t) be the strength of the velocity singularity in the range < < x < (+at ,  
and let Sg = iMf (6) be the strength of the magnetic singularity in the same range. 
This is a special case in which the distribution of magnetic singularities is assumed 
to be proportional to the distribution of velocity singularities in order to demon- 
strate in a simple way the effects of currents in the body. The fundamental 
solution for this case can be written immediately in terms of Oseen's solution, 
that is 

where the mode strengths are given by 
(10) uij = u, rij(Alx, ?A + u, rij(h25, Y), 

u, = u,u + $1 u:, 
U, = Ui+MU$.  

Oseen's solution for a singular flat plate with unit drag is 

where U = Re/hn and h = Re. The function $(r )  = lnr is the potential of a two- 
dimensional source; it is the longitudinal part of the solution, and is chosen such 
that the flow is divergence-free near the origin. The Oseen function in two dimen- 
sions is x = e*"K,(+hr), where K O  is the modified Bessel function of the second 
kind. At large distances from the origin, x has the asymptotic behaviour 
x N e-*A(r-z)/(+hr)i. Near the origin x 21 In r .  Therefore x behaves like a potential 
source near the origin; but for large positive x, it is essentially zero outside a 
parabolic region bounded by y = c(x/h)a. The strength of x inside the parabola 
vanishes slowly, like (l/x)*. However, for negative x, x vanishes exponentially. 
Thus Oseen's solution contains a parabolic wake extending dowstream from the 
body. 

According to equations (4) there are two wakes in this problem. If A, > 0, there 
is a second wake downstream, and if A, < 0, there is a second wake upstream. 
Equations (5) show that A, < 0 if a > 1, and A, > 0 if a < 1. 

The distribution function f (t) is such that the x-component of velocity on the 
plate vanishes; that is, 

On the plate, the argument h(x - t)  < h < 1, therefore 

r,,w-t), 01 N (w2n.r) (1 - w , ~  IX-EI) ,  (14) 
where yo = eY and y = 0-577 (Euler's constant). Substitution of this into 
equation (13) yields 

- 1  =j;l{ul(cl- lnIx-6I)+U,(C,- l n k - t l ) > f ( W t ,  (15) 

where C, = 1 - In ($r,h,), (164  
C, = 1 - In (;Iyoh2). (16b) 
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The solution of equation (15)  is 
2/Re 1 

f(') = (ul(cl + In 2 )  + u,(c, + ln 2 ) )  (1 - ("4. 
The drag coefficient per unit length is therefore 

In  the limit of zero magnetic interaction C, approaches the classical hydro- 

(19) 
dynamic value 277 1 

'Do = - Re (1 - In (yo Rela)} ' 
where Re = U,a/v. 

Now consider the effect of the magnetic singularities on the mode strengths 
Ul and U,: K ,  - MPm 

l -  K,-K, ' 
- Kl+ MPm 

u 

U - __ 
K2-Kl . 2 -  

The effect of a positive M is to decrease Ul and increase U,, and vice-versa for a 
negative M .  In  fact if MPm = K,  the first mode is cancelled out entirely, and if 
N P m  = K,, the second mode is cancelled out. In  the former case, with only the 
second mode remaining, - 

277 1 27r 1 - - ____ - - 
' D - R e C 2 + l n 2 -  Rel-ln(yoRm/8)' 

and in the latter case, with only the first mode remaining, 
27r 1 2n 1 

- In yoRe/8 = 'Do* 

Notice that the effect of currents in the body is proportional to the magnetic 
Prandtl number Pm, which is usually a very small number. 

It is also possible to solve equation ( 1 3 )  forf ( 6 )  when A, and A, are large, because 
in the limit h -+ m, 

( 2 3 )  

Furthermore, for a > 1 (strong magnetic interaction), the k s t  mode only pro- 
duces disturbances downstream of the singularity, while the second mode only 
produces disturbances upstream of the singularity; therefore the integral 
equation for f (() becomes 

For a < 1 (weak magnetic interaction), the &st mode and the second mode only 
create disturbances downstream of the singularity; therefore, 

This is Abel's integral equation, and has the solution 
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The drag coefficient is 

Notice that as a or P m  tends to zero CD approaches the classical value for high 
Reynolds number flow CDo - 4/(nRe)*. (28) 

For a > 1, findingf(6) from equation (24) is somewhat more difficult; however, 
Greenspan (1960) provides the solution. In  the special cases in which either 
U, or U2 vanishes, equation (24) is again easy to solve. If U, vanishes we again have 
Abel's integral equation, and the solution 

If U, vanishes we have an equation which can be converted into Abel's equation 
by the substitution 5 = 1 - 7, and the resulting solution is 

1 2  1 f(t) = -- (1 - [)* Re U2(n/A,)* - 
Thus, when the second mode vanishes (U, = 0) ,  the leading edge is singular and 
there is a trailing wake, but when the first mode vanishes (U, = 0 )  the trailing 
edge is singular and there is a leading wake. 

For a flat plate without internal currents, U, vanishes if the electrical con- 
ductivity is zero, and U, vanishes if the electrical conductivity is infinite. It is 
also possible to make U2 or U, vanish by properly distributing the currents in the 
flat plate as suggested by equations (20a) and (20b) .  Thus, by making MPm = K ,  
we can make U, vanish, and by making MPm = K,, we can make U, vanish. The 
current density generated in the plate, and the vorticity, must be at right angles 
to the flow and in opposite directions on the top and bottom sides. 

The results presented in this section are in agreement with the results of 
Greenspan (1960). Greenspan uses an entirely different mathematical technique 
to arrive at  equation (24), and does not concern himself with currents generated 
in the flat plate. 

4. MHD drag of a sphere 
In  ordinary hydrodynamics, low Reynolds number flow over a sphere is con- 

structed approximately by superposing a uniform flow, the flow of a singular 
needle, and the flow of a potential dipole; therefore it is reasonable to expect that 
low MHD Reynolds number flow over a sphere can be approximated by replacing 
the singular needle by a singular MHD needle as follows : 
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where the ratio of mode strengths for the singular MHD needle is 

The mode strengths Uy and 77; are then determined by expanding the exponentials 
in equation (31) while satisfying the boundary condition on the sphere which 
demands that U = 0; they are 

3 Kl 1 uy II -____ 

u,. II - 
2 K,  -K,  1 - #(K,A, - K,A,)/(K, -Kl) ’ 

1 1 
4 1 - #(K2 A, - K,  Al)/(Kz - K,) ’ (33 b) 

where, from equations (5) and (6) 

(K,A, - KIAl)/(Kz - K,) = Re. (33c) 

The drag of the sphere is due to a singular MHD needle of strength 

#(4n/Re) (1 +#Re), 
D = 6npvU,a(l +$Re). therefore the drag is (34) 

This is precisely the same drag its is obtained without magnetic interaction. It 
appears that for 01 < 1, up to terms of order A, the magnetic interaction has no 
effect on drag. 

It is easy to obtain the solution for 01 > 1 simply by changing the sign of x in 
equation (31) to account for the upstream wake when A, < 0. The result is 

(35c) 

D = 6npvU,a(l+ $K)  (36) 

K,A,+K,A, - 2Ha2+Re2-ReRm where K E  - 

and the drag is 

provided that Ha, Re, Rm are all less than unity. In  the limit Re, Rm -+ 0 with 
a + co, such that Ha2 = ReRma2 is finite but less than unity, Chester’s (1957) 
result is obtained: 

These results also agree with those of Ludford (1959). 

KZ - K ,  ((Re - Rm)2+ 4Ha2)fr ’ 

D = GnpvU,a( 1 +#Ha). (37) 

5. Conclusions 
The fundamental solution approach to this class of MHD flow problems is a 

convenient method of constructing solutions. With a knowledge of the properties 
of the MHD singularities involved it is a simple matter to deduce the physical 
properties of the solutions. Some of these solutions may eventually prove useful 
in the design of probes to measure certain physical properties of a flowing 
conductor. 



448 Meredith C. Courdine 

The author wishes to express his gratitude for the continued interest and 
numerous suggestions afforded by Prof. Julian Cole, California Institute of 
Technology. 

REFERENCES 

BLERKOM, H. VAN 1960 Magnetohydrodynamic flow of a viscous fluid pa& a sphere. 
J .  Fluid Mech. 8, 3. 

CHESTER, W. 1957 The effect of a magnetic field on Stokes flow in a conducting fluid. 
J .  Fluid Mech. 3, 304. 

GOTOH, K. 1960 Magnetohydrodynamic flow past a sphere. J .  Phys. SOC. Japan, 15, 

GOURDINE, M. C. 1960 Generalization of Oseen’s solutions to magnetohydrodynamics. 

GREENSPAN, H. P. 1960 Flat plate drag in magnetohydrodynamic flow. Phys. Fluids, 3, 

GREENSPAN, H. P. & CARRIER, G. F. 1959 The magnetohydrodynamic flow past a flat 

HASIMOTO, H. 1959 Viscous flow of a perfectly conducting fluid with a frozen magnetic 

LBY, E. C. 1960 A theory of thin airfoils and slender bodies in fluids of arbitrary 

LTJDFORD, G. S. S. 1959 The effect of an aligned magnetic field on Oseen flow of a con- 

YOSWOBU, H. 1960 A linearized theory of magnetohydrodynamic flow past a fixed body 

189-6. 

American Rocket Society Symposium. Baltimore, Md. 

581-7. 

plate. J .  Fluid Mech. 6, 77-96. 

field. Phys. Fluids, 2, 337-8. 

electrical conductivity. Thesis, Cornell University. 

ducting fluid. Interim Tech. Rep. no. 43, Dept. of Math., Univ. of Maryland. 

in a parallel magnetic field. J .  Phys. SOC. Japan, 15, 175-88. 




